Current Calibration Capabilities for Solar Irradiance Instruments

Greg Kopp

& LASP Solar Irradiance group

Laboratory for Atmospheric and Space Physics University of Colorado

1234 Innovation Dr., Boulder, CO 80303, USA

Greg.Kopp@LASP.Colorado.edu

Solar and Anthropogenic Climate Signals GISS Land+Ocean Global Temperature El Nino 23 OCT 97 La Nina 17 JAN 99 model: ENSO+VOL, r= 0.48 **serature** 0.6 F volcanic 0.4 omitting solar forcing → OLCANIC AEROSOLS .. poorer tracking of centennial variations 1985 1990 1995 2000 2005 .. higher sensitivity to GHGs late Forcing CO₂ tropospheric aerosols model: SUN+ANTH, r= 0.70 0.6 F 1880 1920 1940 1960 1980 2000 1900 ANTHROPOGENIC GASES greenhouse gases industrial aerosols 0.0 1985 1980 1990 1995 2000 2005

None of these instruments is

TSI Record Has Relied on Continuity

Solar Total Irradiance Measurement Summary

• Continuous and overlapping measurements are critical in maintaining a long term data record.

G. Kopp, Jul 12, 2007

Year

Composites Rely on Continuity and Stability

Two primary TSI composites differ by 40 ppm/yr caused by 2 years of marginal quality data – not even a gap!

Future Needs: TSI – Accuracy and Stability

Stability Has Been Achieved by Duty Cycling Radiometers

TSI Instrument Uncertainties – With Diffraction Correction

Instrument Uncertainties Determined at the Component Level

SORCE/TIM

Correction	Value [ppm]	σ [ppm]
Distance to Sun, Earth & S/C	33,537	0.1
Doppler Velocity	57	0.7
Shutter Waveform	100	1.0
Aperture	1,000,000	30
Diffraction	452	46
Cone Reflectance	250	54
Non-Equivalence, ZH/ZR - 1	7, AC	23
Servo Gain	16,129	0.0
Standard Volt + DAC	1,000,000	7.0
Pulse Width Linearity	1,000,000	186
Standard Ohm + Leads	1,000,000	17
Dark Signal	2,693	10
Scattered Light & IR	100	25
Pointing		10
Measurement Repeatability (Noise)		1.5
Uncertainty due to Sampling		12
Total RSS		206

VIRGO/PMO

Uncertainty of the PMO6V WRR/SI traceability @ 1400W/m2

Component	Value		u	С	(u*c)^2		Solar Irradiance (W/m2)	
Area	N/A					THE CO		
Pclosed	45 mW		0.0000045	5.00E+04	0.050625	VIRGO	D/DIARAD L	
Popen	17 mW		0.0000017	5.00E+04	0.007225		D 1 .:	XX/ 0
CNE		1	5.00E-04	1.40E+03	0.49		Relative	W/m2
CR	N/A		7.00E-05	1.40E+03		•	0.000425	0.50
CSt	N/A		1.00E-04	1.40E+03		Area	0.000425	0.58
CLH	N/A		3.00E-05	1.40E+03		Thermal efficiency	0.000130	0.18
CApH	N/A		5.00E-04	1.40E+03		Thermal efficiency	0.000130	0.16
Cdiff	N/A		1.00E-04	1.40E+03		Fectrical, Power	0.000150	0.20
WRR-Factor		1	6.00E-04	1.40E+03	0.7056	Lectrical. I ower	0.000130	0.20
WRR/SI		1	9.00E-04	1.40E+03	1.5876	Cavity absorption	0.000030	0.04
					2.84105	curry accorption	0.00000	0.0.
		Un	certainty abs		1.6855 W/m2	Total	0.000735	1.00
		Un	certainty rel		1685.5 ppm			
		95	% Uncertainty		3371.1 ppm	RSS	0.000470	0.64

	Relative	VV/11112
Area	0.000425	0.58
Thermal efficiency	0.000130	0.18
Eectrical. Power	0.000150	0.20
Cavity absorption	0.000030	0.04
Total	0.000735	1.00
RSS	0.000470	0.64

Greg Kopp, p. 10

Ground Calibration Improvements Lower Glory Uncertainties

• Glory/TIM has lower uncertainties than SORCE/TIM because of improved ground calibrations

Correction	Value [ppm]	σ [ppm]	SORCE
Distance to Sun, Earth & S/C	33,537	0.1	0.1
Doppler Velocity	57	0.7	0.7
Shutter Waveform	100	1.0	1.0
Aperture	1,000,000	30	30
Diffraction	452	46	46
Cone Reflectance	250	51	54
Non-Equivalence, ZH/ZR - 1	7, AC	23	23
Servo Gain	16,129	0.0	0.0
Standard Volt + DAC	1,000,000	7	7.0
Pulse Width Linearity	1,000,000	6	186
Standard Ohm + Leads	1,000,000	17	17
Dark Signal	2,693	1.7	10
Scattered Light & IR	100	14	25
Pointing		10	10
Measurement Repeatability (Noise)		1.0	1.5
Uncertainty due to Sampling		12	12
Total RSS		83.5	206

Note dominant uncertainties are optical, and affect all solar radiometers

Largest calibration improvement

TIM Requires "Subtle" Corrections

Aperture knowledge accuracy

$$\frac{\Delta A}{A} = \frac{2\pi r \cdot \Delta r}{\pi r^2} = 10^{-4} \text{ (100 ppm)} \implies \Delta r = 200 \text{ nm}$$

Doppler correction due to S/C orbit velocity

$$2\frac{v}{c} = 2 \cdot \frac{8 \times 10^5 \text{ cm/s}}{3 \times 10^{10} \text{ cm/s}} \approx 5 \times 10^{-5} \implies \pm 50 \text{ ppm}$$

• Thermal (mid-IR) background

$$\sigma T^4$$
 · Cone Entrance Area = 8×10^5 ergs $\Rightarrow 1.2 \times 10^6$ ppm

Need "chopping," or phase sensitive detection

Instrument is <u>characterized</u> rather than calibrated for 100 ppm absolute standard uncertainty

Address Applied Power: Trap Diode Power Comparison

- This was a recommendation from the 2005 TSI Accuracy Workshop
- NIST and LASP performed optical power comparisons between a trap diode transfer standard and a ground-based TIM
 - Applying solar power levels with the TIM in vacuum
 - NPL has done similar power comparisons before

This is an optical power measurement, not irradiance

Current Glory/TIM Optical Power Measurements

- Compare radiometer consistency within instrument
 - Preliminary results are consistent with ±0.01% accuracy
- Compare Glory/TIM to SORCE Witness
 - Measures optical power only, not irradiance
 - SORCE Witness compared to trap diode at NIST in Nov. 2006

TSI Radiometer Facility Measures *Irradiance*

TSI Radiometer Facility Measures *Irradiance*

The TRF will:

- 1. Improve the calibration accuracy of future TSI instruments,
- 2. Establish a new ground-based radiometric irradiance standard, and
- 3. Provide a means of comparing existing ground-based TSI instruments against this standard under flight-like operating conditions.

Solar Variability Depends on Wavelength

SORCE and TIMED provide the first ever daily measurements of solar spectrum variations throughout the X-ray, UV, visible, and NIR

Also Need Solar Spectral Irradiance Inputs

Atmospheric Heating Rates Depend on Spectral Irradiances

SORCE and TIMED Measure Irradiance Across Spectrum

Total Irradiance Solar irradiance measurements since March 2003 **Monitor (TIM)** Nearly complete solar spectral coverage TSI SORCE Glory 1000 1000 Wavelength (nm) SIM SORCE Wavelength (nm) UARS SME SOLSTICE 100 Rockets TIMED SDO n XPS SORCE SNOE 10 10-5 100 10-3 104 Irradiance (W m⁻² nm⁻¹) 1995 2000 2005 2010 1980 1985 1990 Time (year)

Solar Spectral Irradiance Measurement Summary

- GOES XRS (1975)
- POES SBUV (1985)
- SME (1981 1990)
- UARS (1991 2005)
- GOME (1995)
- SOHO SEM (1996)
- SOHO VIRGO SPM (1996)
- SNOE (1998 2003)
- TIMED (2001 2008)
- SORCE (2003 2009)
- GOES EUVS (2006)
- SDO EVE (2008 2013+)
- NPOESS SIM (2013)

The SIM Acquires Daily Solar Spectra

• This is the best calibrated solar spectral irradiance instrument acquiring regular spectra

- 310 - 2400 nm

- 2% accuracy

NIST SIRCUS Calibrations Will Improve Future SIMs

- Spectral Irradiance and Radiance Responsivity Calibrations using Uniform Sources (SIRCUS) tests on SORCE/SIM radiometer alone improved efficiency knowledge
- ~0.1% accuracy possible with such end-to-end calibrations

InGaAs Reference Detector

Validate Earth Viewing Instruments From Accurate Solar?

• Cross-calibrating Earth viewing instruments off solar irradiance instruments provides on-orbit calibration or independent validation.

Pointing system allows hyperspectral imagers to view the Earth or the Sun for calibrations.

Greg Kopp, p. 24

See "An On-Orbit Cross-Calibration Approach for CLARREO Hyperspectral Imager" poster

Wavelength [nm]

Solar Irradiance Calibrations: Conclusions

Calibration accuracies

- TSI
 - Progress is being made toward 0.01% absolute accuracy
 - Ground-based calibration facilities provide baseline for future instruments
 - Desired stability has been achieved
- SSI
 - 0.1% likely achievable with NIST SIRCUS calibrations
 - 300 2400 nm
- Solar Irradiance Uses
 - Total solar irradiance used for climate sensitivity studies by extending 30year data record and understanding solar variability
 - Solar spectral irradiance measurements needed to model Earth's atmospheric response and solar variability
 - Absolute accuracy of radiative balance